
C FUNCTION

Dr. Mukti Jadhav

WHAT IS C FUNCTION?

• A large C program is divided into basic building
blocks called C function. C function contains
set of instructions enclosed by “{ }” which
performs specific operation in a C program.
Actually, Collection of these functions creates
a C program.

USES OF C FUNCTIONS:

• C functions are used to avoid rewriting same
logic/code again and again in a program.

• There is no limit in calling C functions to make use of
same functionality wherever required.

• We can call functions any number of times in a
program and from any place in a program.

• A large C program can easily be tracked when it is
divided into functions.

• The core concept of C functions are, re-usability,
dividing a big task into small pieces to achieve the
functionality and to improve understandability of very
large C programs.

C FUNCTION DECLARATION, FUNCTION CALL
AND FUNCTION DEFINITION:

• There are 3 aspects in each C function. They
are,

• Function declaration or prototype –
This informs compiler about the function
name, function parameters and return value’s
data type.

• Function call – This calls the actual function
• Function definition – This contains all the

statements to be executed.

C functions aspects syntax

function definition

Return_type
function_name
(arguments list)

{ Body of function; }

function call
function_name
(arguments list);

function declaration

return_type
function_name
(argument list);

SIMPLE EXAMPLE PROGRAM FOR C
FUNCTION

• As you know, functions should be declared
and defined before calling in a C program.

• In the below program, function “square” is
called from main function.

• The value of “m” is passed as argument to the
function “square”. This value is multiplied by
itself in this function and multiplied value “p”
is returned to main function from function
“square”.

Conti..
#include<stdio.h>
// function prototype, also called function declaration
float square (float x);
// main function, program starts from here

int main()
{
 float m, n ;
 printf ("\nEnter some number for finding square \n");
 scanf ("%f", &m) ;
 // function call
 n = square (m) ;
 printf ("\nSquare of the given number %f is %f",m,n);
}

float square (float x) // function definition
{
 float p ;
 p = x * x ;
 return (p) ;
}

Output

Enter some number for finding square

2

Square of the given number 2.000000 is
4.000000

HOW TO CALL C FUNCTIONS IN A
PROGRAM

• There are two ways that a C function can be
called from a program.

• Call by value

• Call by reference

CALL BY VALUE

• In call by value method, the value of the variable is
passed to the function as parameter.

• The value of the actual parameter can not be modified
by formal parameter.

• Different Memory is allocated for both actual and
formal parameters. Because, value of actual parameter
is copied to formal parameter.

• Note:
• Actual parameter – This is the argument which is used

in function call.
• Formal parameter – This is the argument which is used

in function definition

EXAMPLE PROGRAM FOR C FUNCTION
(USING CALL BY VALUE):

• In this program, the values of the variables
“m” and “n” are passed to the function
“swap”.

• These values are copied to formal parameters
“a” and “b” in swap function and used.

Conti..

#include<stdio.h>

// function prototype, also called function declaration

void swap(int a, int b);

int main()

{

 int m = 22, n = 44;

 // calling swap function by value

 printf(" values before swap m = %d \nand n = %d", m, n);

 swap(m, n);

}

void swap(int a, int b)

{

 int tmp;

 tmp = a;

 a = b;

 b = tmp;

 printf(" \nvalues after swap m = %d\n and n = %d", a, b);

}

Output

• values before swap m = 22
and n = 44
values after swap m = 44
and n = 22

CALL BY REFERENCE:

• In call by reference method, the address of the
variable is passed to the function as
parameter.

• The value of the actual parameter can be
modified by formal parameter.

• Same memory is used for both actual and
formal parameters since only address is used
by both parameters.

EXAMPLE PROGRAM FOR C FUNCTION
(USING CALL BY REFERENCE)

• In this program, the address of the variables “m”
and “n” are passed to the function “swap”.

• These values are not copied to formal parameters
“a” and “b” in swap function.

• Because, they are just holding the address of
those variables.

• This address is used to access and change the
values of the variables.

•

Conti..

#include<stdio.h>

// function prototype, also called function declaration

void swap(int *a, int *b);

int main()

{

 int m = 22, n = 44;

 // calling swap function by reference

 printf("values before swap m = %d \n and n = %d",m,n);

 swap(&m, &n);

}

void swap(int *a, int *b)

{

 int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

 printf("\n values after swap a = %d \nand b = %d", *a, *b);

}

Output

• values before swap m = 22

• and n = 44
values after swap a = 44

